[Raw
data] [50 most cited papers]
[50 most relevant papers]
[cites used to compute IF]
[Recent
citations ][Frequent citing
series ] [more data in
EconPapers]
[
trace new citations] [Missing
citations? Add them now]
[Incorrect content? Let us
know]
| IF | AIF | CIF | IF5 | DOC | CDO | CIT | NCI | CCU | D2Y | C2Y | D5Y | C5Y | SC | %SC | CiY | II | AII | |
| 2020 | 0 | 0.64 | 0 | 0 | 49 | 49 | 18 | 0 | 0 | 0 | 0 | 0 | 0.3 | |||||
| 2021 | 0 | 0.74 | 0.02 | 0 | 83 | 132 | 26 | 2 | 2 | 49 | 49 | 1 | 50 | 2 | 0.02 | 0.27 | ||
| 2022 | 0.08 | 0.74 | 0.07 | 0.08 | 82 | 214 | 14 | 14 | 16 | 132 | 11 | 132 | 11 | 0 | 2 | 0.02 | 0.22 | |
| 2023 | 0.06 | 0.7 | 0.07 | 0.08 | 51 | 265 | 5 | 19 | 35 | 165 | 10 | 214 | 17 | 5 | 26.3 | 0 | 0.2 | |
| 2024 | 0.04 | 0.82 | 0.05 | 0.05 | 35 | 300 | 0 | 16 | 51 | 133 | 5 | 265 | 14 | 4 | 25 | 0 | 0.24 |
| IF: | Two years Impact Factor: C2Y / D2Y |
| AIF: | Average Impact Factor for all series in RePEc in year y |
| CIF: | Cumulative impact factor |
| IF5: | Five years Impact Factor: C5Y / D5Y |
| DOC: | Number of documents published in year y |
| CDO: | Cumulative number of documents published until year y |
| CIT: | Number of citations to papers published in year y |
| NCI: | Number of citations in year y |
| CCU: | Cumulative number of citations to papers published until year y |
| D2Y: | Number of articles published in y-1 plus y-2 |
| C2Y: | Cites in y to articles published in y-1 plus y-2 |
| D5Y: | Number of articles published in y-1 until y-5 |
| C5Y: | Cites in y to articles published in y-1 until y-5 |
| SC: | selft citations in y to articles published in y-1 plus y-2 |
| %SC: | Percentage of selft citations in y to articles published in y-1 plus y-2 |
| CiY: | Cites in year y to documents published in year y |
| II: | Immediacy Index: CiY / Documents. |
| AII: | Average Immediacy Index for series in RePEc in year y |
| # | Year | Title | Cited |
|---|---|---|---|
| 1 | 2020 | A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. (2020). Nguyen, Tuan Anh ; Kruse, Thomas ; Hutzenthaler, Martin ; Jentzen, Arnulf. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:1:y:2020:i:2:d:10.1007_s42985-019-0006-9. Full description at Econpapers || Download paper | 15 |
| 2 | 2021 | Neural networks-based backward scheme for fully nonlinear PDEs. (2021). Warin, Xavier ; Germain, Maximilien ; Pham, Huyen. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00062-8. Full description at Econpapers || Download paper | 10 |
| 3 | 2021 | Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. (2021). , Weinan ; Kruse, Thomas ; Hutzenthaler, Martin ; Jentzen, Arnulf. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:6:d:10.1007_s42985-021-00089-5. Full description at Econpapers || Download paper | 8 |
| 4 | 2022 | Deep learning schemes for parabolic nonlocal integro-differential equations. (2022). Castro, Javier. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:6:d:10.1007_s42985-022-00213-z. Full description at Econpapers || Download paper | 4 |
| 5 | 2022 | Eckhaus instability of stationary patterns in hyperbolic reactionâdiffusion models on large finite domains. (2022). Consolo, Giancarlo ; Grifo, Gabriele. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:5:d:10.1007_s42985-022-00193-0. Full description at Econpapers || Download paper | 4 |
| 6 | 2021 | The unique continuation property for second order evolution PDEs. (2021). Choulli, Mourad. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:5:d:10.1007_s42985-021-00123-6. Full description at Econpapers || Download paper | 3 |
| 7 | 2023 | Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus. (2023). Yamada, Toshihiro ; Takahashi, Akihiko. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:4:y:2023:i:4:d:10.1007_s42985-023-00240-4. Full description at Econpapers || Download paper | 3 |
| 8 | 2022 | Deep neural network approximations for solutions of PDEs based on Monte Carlo algorithms. (2022). Grohs, Philipp ; Salimova, Diyora ; Jentzen, Arnulf. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:4:d:10.1007_s42985-021-00100-z. Full description at Econpapers || Download paper | 2 |
| 9 | 2022 | Existence of a minimizer for a nonlinear Schrödinger system with three wave interaction under non-symmetric potentials. (2022). Osada, Yuki. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:2:d:10.1007_s42985-022-00160-9. Full description at Econpapers || Download paper | 2 |
| 10 | 2021 | Solving high-dimensional HamiltonâJacobiâBellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space. (2021). Nusken, Nikolas ; Richter, Lorenz. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:4:d:10.1007_s42985-021-00102-x. Full description at Econpapers || Download paper | 2 |
| 11 | 2023 | Global logarithmic stability of a Cauchy problem for anisotropic wave equations. (2023). Choulli, Mourad ; Bellassoued, Mourad. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:4:y:2023:i:3:d:10.1007_s42985-023-00242-2. Full description at Econpapers || Download paper | 1 |
| 12 | 2021 | An alternative proof of $$L^q$$ L q â $$L^r$$ L r estimates of the Oseen semigroup in higher dimensional exterior domains. (2021). Hishida, Toshiaki. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:2:d:10.1007_s42985-021-00086-8. Full description at Econpapers || Download paper | 1 |
| 13 | 2024 | Energy decay analysis for Porous elastic system with microtemperature: Classical vs second spectrum approach. (2024). Zougheib, Hamza ; el Arwadi, Toufic ; El-Hindi, Mohammad ; Soufyane, Abdelaziz. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:5:y:2024:i:2:d:10.1007_s42985-024-00273-3. Full description at Econpapers || Download paper | 1 |
| 14 | 2020 | Asymptotic behavior for a class of derivative nonlinear Schrödinger systems. (2020). Katayama, Soichiro ; Sakoda, Daisuke. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:1:y:2020:i:3:d:10.1007_s42985-020-00012-4. Full description at Econpapers || Download paper | 1 |
| 15 | 2023 | Neural networks for first order HJB equations and application to front propagation with obstacle terms. (2023). Warin, Xavier ; Bokanowski, Olivier ; Prost, Averil. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:4:y:2023:i:5:d:10.1007_s42985-023-00258-8. Full description at Econpapers || Download paper | 1 |
| 16 | 2022 | Local existence for the non-resistive magnetohydrodynamic system with fractional dissipation in the $$L^p$$ L p framework. (2022). Yao, Zheng-An ; Qiu, Hua. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:6:d:10.1007_s42985-022-00211-1. Full description at Econpapers || Download paper | 1 |
| 17 | 2020 | Fourth-order time-stepping compact finite difference method for multi-dimensional space-fractional coupled nonlinear Schrödinger equations. (2020). Almushaira, Mustafa ; Liu, Fei. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:1:y:2020:i:6:d:10.1007_s42985-020-00048-6. Full description at Econpapers || Download paper | 1 |
| 18 | 2022 | Blow up of solutions of semilinear wave equations related to nonlinear waves in de Sitter spacetime. (2022). Wakasugi, Yuta ; Tsutaya, Kimitoshi. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:1:d:10.1007_s42985-021-00145-0. Full description at Econpapers || Download paper | 1 |
| 19 | 2023 | A deep learning approach to the probabilistic numerical solution of path-dependent partial differential equations. (2023). Privault, Nicolas ; Yu, Jiang. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:4:y:2023:i:4:d:10.1007_s42985-023-00255-x. Full description at Econpapers || Download paper | 1 |
| 20 | 2021 | Attractionârepulsion taxis mechanisms in a predatorâprey model. (2021). Bell, Jonathan ; Haskell, Evan C. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:3:d:10.1007_s42985-021-00080-0. Full description at Econpapers || Download paper | 1 |
| 21 | 2022 | Large time asymptotics for the fractional modified Korteweg-de Vries equation with $$\alpha \in \left( 2,4\right) $$ α â 2 , 4. (2022). Naumkin, Pavel I ; Hayashi, Nakao ; Sanchez-Suarez, Isahi. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:6:d:10.1007_s42985-022-00206-y. Full description at Econpapers || Download paper | 1 |
| 22 | 2020 | Global existence of solutions to some equations modeling phase separation of self-propelled particles. (2020). Bae, Hantaek. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:1:y:2020:i:6:d:10.1007_s42985-020-00047-7. Full description at Econpapers || Download paper | 1 |
| 23 | 2021 | Development and analysis of entropy stable no-slip wall boundary conditions for the Eulerian model for viscous and heat conducting compressible flows. (2021). Sayyari, Mohammed ; Parsani, Matteo ; Dalcin, Lisandro. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:6:d:10.1007_s42985-021-00132-5. Full description at Econpapers || Download paper | 1 |
| 24 | 2021 | On the uniqueness of a suitable weak solution to the NavierâStokes Cauchy problem. (2021). Maremonti, Paolo ; Crispo, Francesca. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:3:d:10.1007_s42985-021-00073-z. Full description at Econpapers || Download paper | 1 |
| 25 | 2020 | Stability analysis of a delayed sir epidemic model with diffusion and saturated incidence rate. (2020). Boutayeb, Salahaddine ; Rachik, Mostafa ; Laarabi, Hassan ; Alaoui, Hamad Talibi ; Abta, Abdelhadi. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:1:y:2020:i:4:d:10.1007_s42985-020-00015-1. Full description at Econpapers || Download paper | 1 |
| # | Year | Title | Cited |
|---|---|---|---|
| 1 | 2020 | A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. (2020). Nguyen, Tuan Anh ; Kruse, Thomas ; Hutzenthaler, Martin ; Jentzen, Arnulf. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:1:y:2020:i:2:d:10.1007_s42985-019-0006-9. Full description at Econpapers || Download paper | 10 |
| 2 | 2021 | Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. (2021). , Weinan ; Kruse, Thomas ; Hutzenthaler, Martin ; Jentzen, Arnulf. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:6:d:10.1007_s42985-021-00089-5. Full description at Econpapers || Download paper | 7 |
| 3 | 2021 | Neural networks-based backward scheme for fully nonlinear PDEs. (2021). Warin, Xavier ; Germain, Maximilien ; Pham, Huyen. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:1:d:10.1007_s42985-020-00062-8. Full description at Econpapers || Download paper | 5 |
| 4 | 2022 | Deep learning schemes for parabolic nonlocal integro-differential equations. (2022). Castro, Javier. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:6:d:10.1007_s42985-022-00213-z. Full description at Econpapers || Download paper | 4 |
| 5 | 2021 | The unique continuation property for second order evolution PDEs. (2021). Choulli, Mourad. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:5:d:10.1007_s42985-021-00123-6. Full description at Econpapers || Download paper | 3 |
| 6 | 2023 | Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus. (2023). Yamada, Toshihiro ; Takahashi, Akihiko. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:4:y:2023:i:4:d:10.1007_s42985-023-00240-4. Full description at Econpapers || Download paper | 3 |
| 7 | 2022 | Deep neural network approximations for solutions of PDEs based on Monte Carlo algorithms. (2022). Grohs, Philipp ; Salimova, Diyora ; Jentzen, Arnulf. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:4:d:10.1007_s42985-021-00100-z. Full description at Econpapers || Download paper | 2 |
| 8 | 2022 | Existence of a minimizer for a nonlinear Schrödinger system with three wave interaction under non-symmetric potentials. (2022). Osada, Yuki. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:2:d:10.1007_s42985-022-00160-9. Full description at Econpapers || Download paper | 2 |
| 9 | 2022 | Eckhaus instability of stationary patterns in hyperbolic reactionâdiffusion models on large finite domains. (2022). Consolo, Giancarlo ; Grifo, Gabriele. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:3:y:2022:i:5:d:10.1007_s42985-022-00193-0. Full description at Econpapers || Download paper | 2 |
| Year | Title | |
|---|---|---|
| 2024 | On local decay of inflaton and axion fields. (2024). Morales, Matas ; Muoz, Claudio. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:5:y:2024:i:3:d:10.1007_s42985-024-00287-x. Full description at Econpapers || Download paper | |
| 2024 | Deep high-order splitting method for semilinear degenerate PDEs and application to high-dimensional nonlinear pricing models. (2024). Yamada, Toshihiro ; Naito, Riu. In: Digital Finance. RePEc:spr:digfin:v:6:y:2024:i:4:d:10.1007_s42521-023-00091-z. Full description at Econpapers || Download paper | |
| 2024 | Stationary and Oscillatory patterned solutions in three-compartment reactionâdiffusion systems: Theory and application to dryland ecology. (2024). Valenti, Giovanna ; Consolo, Giancarlo ; Grifo, Gabriele ; Curro, Carmela. In: Chaos, Solitons & Fractals. RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008397. Full description at Econpapers || Download paper | |
| 2024 | Deep neural network expressivity for optimal stopping problems. (2024). Gonon, Lukas. In: Finance and Stochastics. RePEc:spr:finsto:v:28:y:2024:i:3:d:10.1007_s00780-024-00538-0. Full description at Econpapers || Download paper | |
| 2024 | Uniqueness of continuation for semilinear elliptic equations. (2024). Choulli, Mourad. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:5:y:2024:i:4:d:10.1007_s42985-024-00295-x. Full description at Econpapers || Download paper |
| Year | Citing document |
|---|
| Year | Citing document | |
|---|---|---|
| 2022 | Dryland vegetation pattern dynamics driven by inertial effects and secondary seed dispersal. (2022). Valenti, Giovanna ; Consolo, Giancarlo ; Grifo, Gabriele. In: Ecological Modelling. RePEc:eee:ecomod:v:474:y:2022:i:c:s0304380022002721. Full description at Econpapers || Download paper | |
| 2022 | An Extended Thermodynamics Model for Blood Flow. (2022). Barbera, Elvira ; Pollino, Annamaria. In: Mathematics. RePEc:gam:jmathe:v:10:y:2022:i:16:p:2977-:d:891329. Full description at Econpapers || Download paper |
| Year | Citing document | |
|---|---|---|
| 2021 | A model of the burglar alarm hypothesis of prey alarm calls. (2021). Bell, Jonathan ; Haskell, Evan C. In: Theoretical Population Biology. RePEc:eee:thpobi:v:141:y:2021:i:c:p:1-13. Full description at Econpapers || Download paper | |
| 2021 | A remark on the uniqueness of KozonoâNakaoâs mild $$L^3$$ L 3 -solutions on the whole time axis to the NavierâStokes equations in unbounded domains. (2021). Taniuchi, Yasushi. In: Partial Differential Equations and Applications. RePEc:spr:pardea:v:2:y:2021:i:5:d:10.1007_s42985-021-00121-8. Full description at Econpapers || Download paper |